Sustainable Onshore Lobster Aquaculture
Sustainable Onshore Lobster Aquaculture

Effect of protein synthesis inhibitor cycloheximide on starvation, fasting and feeding oxygen consumption in juvenile spiny lobster Sagmariasus verreauxi

Abstract

Metabolism in aquatic ectotherms evaluated by oxygen consumption rates reflects energetic costs including those associated with protein synthesis. Metabolism is influenced by nutritional status governed by feeding, nutrient intake and quality, and time without food. However, little is understood about contribution of protein synthesis to crustacean energy metabolism. This study is the first using a protein synthesis inhibitor cycloheximide to research contribution of cycloheximide-sensitive protein synthesis to decapod crustacean metabolism. Juvenile Sagmariasus verreauxi were subject to five treatments: 2-day fasted lobsters sham injected with saline; 2-day fasted lobsters injected with cycloheximide; 10-day starved lobsters injected with cycloheximide; post-prandial lobsters fed with squid Nototodarus sloanii with no further treatment; and post-prandial lobsters injected with cycloheximide. Standard and routine metabolic rates in starved lobsters were reduced by 32% and 41%, respectively, compared to fasted lobsters, demonstrating metabolic downregulation with starvation. Oxygen consumption rates of fasted and starved lobsters following cycloheximide injection were reduced by 29% and 13%, respectively, demonstrating protein synthesis represents only a minor component of energy metabolism in unfed lobsters. Oxygen consumption rate of fed lobsters was reduced by 96% following cycloheximide injection, demonstrating protein synthesis in decapods contributes a major proportion of specific dynamic action (SDA). SDA in decapods is predominantly a post-absorptive process likely related to somatic growth. This work extends previously limited knowledge on contribution of protein synthesis to crustacean metabolism, which is crucial to explore the relationship between nutritional status and diet quality and how this will affect growth potential in aquaculture species. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

About

Research Hub Investigator(s)
Publication Year
2019
Citation
Wang, S., Fitzgibbon, Q.P., Carter, C.G. & Smith, G.G. 2019, "Effect of protein synthesis inhibitor cycloheximide on starvation, fasting and feeding oxygen consumption in juvenile spiny lobster Sagmariasus verreauxi", Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol. 189, no. 3-4, pp. 351-365.
Link
Link to this Publication
Back to our Publication List
Sustainable Onshore Lobster AquacultureSustainable Onshore Lobster Aquaculture
The ARC Research Hub for Sustainable Onshore Lobster Aquaculture is funded by the Australian Government through the Australian Research Council Industrial Transformation Research Program. 

For more information about the Research Hub please contact us at Lobster.Aquaculture@utas.edu.au or phone +61 3 6226 8268.
Australian Research CouncilInstitute of Marine and Antarctic StudiesUniversity of TasmaniaOrnatasUniversity of Sunshine CoastPFG GroupUniversity of New Zealand
Copyright 2025 ARC Research Hub for Sustainable Onshore Lobster Aquaculture.
Top linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram