Sustainable Onshore Lobster Aquaculture
Sustainable Onshore Lobster Aquaculture

The Achilles heel for spiny lobsters: The energetics of the non-feeding post-larval stage


Spiny lobsters are highly valuable seafood species that are captured and marketed in more than 90 countries. After more than 30 years of stable catches, spiny lobster fisheries in many parts of the world are declining due to decreased recruitment. The planktonic larvae spend up to 2 years in offshore waters, accumulating energy stores to fuel the non-feeding post-larva, or puerulus, to actively migrate onshore and settle. The total energy required by spiny lobster pueruli for cross-shelf migration has not been accurately determined. Recent advances in larval culture have provided the opportunity for the first detailed examination of the swimming performance, respiratory metabolism and nitrogen excretion of spiny lobster (Sagmariasus verreauxi) throughout the puerulus stage. The routine and active metabolic rates of pueruli were lower than for most other decapod larvae, probably to provide greater energy efficiency. However, pueruli were found to have limited time, swimming ability and fuel for active cross-shelf migration. It is estimated that S. verreauxi pueruli require at least 13.8 mg of stored lipid to provide sufficient energy (18.4% DW) to complete the puerulus stage and recruit to coastal habitats. The ability of the preceding phyllosoma larvae to accumulate these reserves, and the presence of favourable oceanographic conditions during the limited time available to the migrating puerulus, are both crucial to subsequent successful recruitment. Spiny lobster recruitment processes appear to be particularly vulnerable to changes in oceanic climate which is likely to contribute to the recent large-scale declines in recruitment to valuable fished populations. © 2013 John Wiley & Sons Ltd.


Research Hub Investigator(s)
Publication Year
Fitzgibbon, Q.P., Jeffs, A.G. & Battaglene, S.C. 2014, "The Achilles heel for spiny lobsters: The energetics of the non-feeding post-larval stage", Fish and Fisheries, vol. 15, no. 2, pp. 312-326.
Link to this Publication
Back to our Publication List
Sustainable Onshore Lobster AquacultureSustainable Onshore Lobster Aquaculture
The ARC Research Hub for Sustainable Onshore Lobster Aquaculture is funded by the Australian Government through the Australian Research Council Industrial Transformation Research Program. 

For more information about the Research Hub please contact us at or phone +61 3 6226 8268.
Australian Research CouncilInstitute of Marine and Antarctic StudiesUniversity of TasmaniaOrnatasUniversity of Sunshine CoastPFG GroupUniversity of New Zealand
Copyright 2024 ARC Research Hub for Sustainable Onshore Lobster Aquaculture.
Top linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram